Ubiquitin-specific Protease 15 Negatively Regulates Virus-induced Type I Interferon Signaling via Catalytically-dependent and -independent Mechanisms
نویسندگان
چکیده
Viral infection triggers a series of signaling cascades, which converge to activate the transcription factors nuclear factor-κB (NF-κB) and interferon regulatory factor 3 (IRF3), thereby inducing the transcription of type I interferons (IFNs). Although not fully characterized, these innate antiviral responses are fine-tuned by dynamic ubiquitination and deubiquitination processes. In this study, we report ubiquitin-specific protease (USP) 15 is involved in regulation of the retinoic acid-inducible gene I (RIG-I)-dependent type I IFN induction pathway. Knockdown of endogenous USP15 augmented cellular antiviral responses. Overexpression of USP15 inhibited the transcription of IFN-β. Further analyses identified histidine 862 as a critical residue for USP15's catalytic activity. Interestingly, USP15 specifically removed lysine 63-linked polyubiquitin chains from RIG-I among the essential components in RIG-I-like receptor-dependent pathway. In addition, we demonstrated that in contrast to USP15 de-ubiquitinating (DUB) activity, USP15-mediated inhibition of IFN signaling was not abolished by mutations eliminating the catalytic activity, indicating that a fraction of USP15-mediated IFN antagonism was independent of the DUB activity. Catalytically inactive USP15 mutants, as did the wild-type protein, disrupted virus-induced interaction of RIG-I and IFN-β promoter stimulator 1. Taken together, our data demonstrate that USP15 acts as a negative regulator of RIG-I signaling via DUB-dependent and independent mechanisms.
منابع مشابه
Ubiquitin-Specific Proteases 25 Negatively Regulates Virus-Induced Type I Interferon Signaling
Ubiquitination and deubiquitination have emerged as critical regulatory processes in the virus-triggered type I interferon (IFN) induction pathway. In this study, we carried out a targeted siRNA screen of 54 ubiquitin-specific proteases (USPs) and identified USP25 as a negative regulator of the virus-triggered type I IFN signaling pathway. Overexpression of USP25 inhibited virus-induced activat...
متن کاملDYRK2 Negatively Regulates Type I Interferon Induction by Promoting TBK1 Degradation via Ser527 Phosphorylation
Viral infection activates the transcription factors NF-κB and IRF3, which contribute to the induction of type I interferons (IFNs) and cellular antiviral responses. Protein kinases play a critical role in various signaling pathways by phosphorylating their substrates. Here, we identified dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 2 (DYRK2) as a negative regulator of virus-tr...
متن کاملUSP21 negatively regulates antiviral response by acting as a RIG-I deubiquitinase
Lys63-linked polyubiquitination of RIG-I is essential in antiviral immune defense, yet the molecular mechanism that negatively regulates this critical step is poorly understood. Here, we report that USP21 acts as a novel negative regulator in antiviral responses through its ability to bind to and deubiquitinate RIG-I. Overexpression of USP21 inhibited RNA virus-induced RIG-I polyubiquitination ...
متن کاملThe papain-like protease of porcine epidemic diarrhea virus negatively regulates type I interferon pathway by acting as a viral deubiquitinase.
Porcine epidemic diarrhea virus (PEDV) is the cause of an economically important swine disease. Previous studies suggested that PEDV does not elicit a robust IFN response, but the mechanism(s) used to evade or block this innate immune response was not known. In this study, we found that PEDV infection blocked synthetic dsRNA-induced IFN-β production by interfering with the activation of interfe...
متن کاملSuppression of USP18 Potentiates the Anti-HBV Activity of Interferon Alpha in HepG2.2.15 Cells via JAK/STAT Signaling
Ubiquitin-specific protease 18 (USP18, also known as UBP43) has both interferon stimulated gene 15 (ISG15) dependent and ISG15-independent functions. By silencing the expression of USP18 in HepG2.2.15 cells, we studied the effect of USP18 on the anti-HBV activity of IFN-F and demonstrated that knockdown of USP18 significantly Inhibited the HBV expression and increased the expression of ISGs. Le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015